https://www.faz.net/-gwz-8yomk

Algebra : Von natürlich bis hyperkomplex

Ein Quader, dessen gegenüberliegende Seiten gleich eingefärbt sind, wird zwei Drehungen unterworfen (oben). Vertauscht man deren Reihenfolge (unten), erhält man ein anderes Resultat.
Ein Quader, dessen gegenüberliegende Seiten gleich eingefärbt sind, wird zwei Drehungen unterworfen (oben). Vertauscht man deren Reihenfolge (unten), erhält man ein anderes Resultat. : Bild: F.A.Z. Grafik Piron

Hamilton hatte einen neuen Typ von Zahlen entdeckt, die sogenannten Quaternionen. Sie leisten tatsächlich genau das in drei Dimensionen, was die komplexen Zahlen in zwei können: Ihre Multiplikation und Division beschreiben Drehungen im dreidimensionalen Raum. Doch diese Eigenschaft hat einen Preis: Anders als in zwei Dimensionen ist es in drei nicht mehr egal, in welcher Reihenfolge man zwei Drehungen ausführt (siehe nebenstehende Grafik), und das bedeutet, für zwei Quaternionen A und B gilt nicht mehr notwendig A·B = B·A oder im Mathematiker-Jargon: Quaternionen kommutieren nicht. Ihre Menge, Hamilton zu Ehren durch ein „H“ mit Doppelstrich symbolisiert, ist daher kein Körper mehr, sondern nur ein sogenannter Schiefkörper.

Trotzdem kann man räumliche physikalische Prozesse vollständig mit Quaternionen beschreiben, und mit der Ausarbeitung des dazu notwendigen mathematischen Apparats verbrachte Hamilton nun den Rest seines Lebens. Noch kurz vor seinem Tod arbeitete er an seinem 800-Seiten-Wälzer „Elements of Quaternions“, und tatsächlich bildeten sich in England und Amerika Schulen von „Quaternionisten“. Doch dann gerieten die vierdimensionalen hyperkomplexen Zahlen wieder fast in Vergessenheit, nachdem sich um 1890 herum die moderne Vektorrechnung zu etablieren begann. Vektoren kann man zwar addieren und multiplizieren, nicht aber dividieren, doch dieser Mangel an mathematischer Eleganz wird durch eine etwas höhere Anschaulichkeit ausgeglichen. Erst im Zeitalter der Robotik und vor allem der Computergrafik, wo es komplizierte Rotationen im Raum effizient zu berechnen gilt, erleben die Quaternionen heute ein kleines Comeback. „Die meisten von uns sehen in den Quaternionen nicht mehr die kosmische Bedeutung, die Hamilton ihnen beimaß“, erklärt Baez. „Aber sie passen gut in das Schema der Dinge.“

Dieses Schema aber drängt sofort zu der Frage, ob das Reich der Zahlen nicht noch über die Quaternionen hinausreicht. Tatsächlich ist dem so. Hamiltons Studienfreund John Graves (1806 bis 1870), der Jurist geworden war, sich aber weiterhin für Mathematik interessierte, begann über noch höherdimensionale Zahlen nachzudenken, sobald er von den Quaternionen erfuhr, und wurde bereits im Dezember 1843 fündig. Er stellte fest, dass es achtdimensionale hyperkomplexe Zahlen gibt, mit vier weiteren imaginären Einheiten zusätzlich zu den i, j und k der Quaternionen, in denen ebenfalls Addition und Multiplikation samt ihrer Umkehrungen möglich sind.

Die Oktonionen finden Stringtheoretiker klasse

Hamilton indes war von diesen Zahlen, die heute Oktonionen heißen, nicht ganz so angetan. Denn nicht nur, dass hier – wie bei den Quaternionen – das Kommutativgesetz nicht mehr gilt. Oktonionen sind überdies nicht einmal mehr assoziativ, das heißt, für drei Oktonionen A, B, und C gilt nicht in jedem Fall A·(B·C)= (A·B)·C. Es war Hamilton, der im Juli 1844 auf diese Tatsache aufmerksam wurde. „Tatsächlich hat er diesen Ausdruck ,assoziativ‘ in etwa zu dieser Zeit erfunden“, sagt John Baez. „Die Oktonionen könnten also dazu beigetragen haben, die Bedeutung dieses Konzepts zu klären.“

Weitere Themen

So attackiert HIV das menschliche Immunsystem Video-Seite öffnen

Videografik : So attackiert HIV das menschliche Immunsystem

Das HI-Virus greift das menschliche Immunsystem an und schwächt die Abwehr gegen Infektionen. Das am weitesten fortgeschrittene Stadium wird als Aids bezeichnet. Das Virus kann durch eine antiretrovirale Therapie unterdrückt werden.

Topmeldungen

Ein ukrainischer Soldat im Dezember nahe der Frontlinie in der Ostukraine

Warnung vor Angriff im Januar : 175.000 Soldaten gegen die Ukraine?

An vier Punkten sammelten sich 50 russische Gefechtsverbände mit Panzern und Artillerie, heißt es aus der amerikanischen Regierung. Sie befürchtet ein Angriff auf die Ukraine. Joe Biden will deshalb bald mit Wladimir Putin reden.
Schattenseite eines grellen Gewerbes: Die Vermüllung ist nicht das einzige Argument, das Gegner von Feuerwerken anführen.

Silvester : Ohne Schall und Rauch

Das Verkaufsverbot für Böller und Raketen an Silvester spaltet: Die einen freuen sich über weniger Lärm und Feinstaub, andere sehen ein Kulturgut in Gefahr. Unternehmen fürchten um ihre Existenz – über eine kleine, aber lautstarke Branche.