https://www.faz.net/-gwz-6yrg2

Vulkanismus : Diamanten rasen an die Erdoberfläche

  • -Aktualisiert am

Gebot: 6 Millionen Euro Bild: dpa

Dimanten entstehen tief im Erdinneren. Über den Schlund von Vulkanen gelangen sie zusammen mit dem Magma an die Oberfläche. Dampf und Kohlendioxid sorgen für den nötigen starken Auftrieb.

          Wie Diamanten entstehen, ist längst kein Geheimnis mehr. Seit den fünfziger Jahren des vergangenen Jahrhunderts wird nämlich Graphit im industriellen Maßstab unter hohem Druck in funkelnde Edelsteine umgewandelt. Wie natürliche Rohdiamanten aber aus dem Erdinneren an die Erdoberfläche gelangen, ist dagegen noch immer weitgehend unklar. Eine deutsch-kanadische Forschergruppe hat nun in Laborversuchen eine Erklärung dafür gefunden, wie die wertvollen Juwelen ihre vulkanische Reise durch den oberen Erdmantel und die Erdkruste unbeschädigt überstehen.

          Ein Schlund wie eine Karotte 

          Will man Graphit in die starre diamantene Form eines Oktaeders bringen, ist ein Druck von mindestens fünf Gigapascal - das entspricht dem 50 000fachen des Luftdrucks an der Erdoberfläche - und eine Temperatur von etwa tausend Grad notwendig. Innerhalb der Erde sind diese Bedingungen nur im oberen Erdmantel in einer Tiefe unterhalb von 170 Kilometern erfüllt. Die meisten Diamantlagerstätten auf der Erde sind an  meist recht flache Vulkankrater gebunden, die in Form einer langen Karotte bis zu 2,5 Kilometer tief in die Erdkruste hineinreichen. Diese Krater sind in der Regel mit einem feinen, aus Bruchstücken erkalteter Lava bestehenden Gestein gefüllt. Innerhalb dieser sogenannten Brekzien finden sich allerlei Minerale aus dem Erdmantel, darunter auch Olivin und eben Rohdiamanten.

          Kanadisches Kimberlit. Die Mineralien gelten als Indikator für das Vorkommen von Diamanten

          Der rätselhafte Weg zur Erdoberfläche

          Während Olivin einen langsamen, mehrere Tage dauernden Transport aus dem Erdmantel an die Oberfläche unbeschadet übersteht, würden Diamanten während des Transports zerfallen. Diese Edelsteine aus Kohlenstoff sind nämlich nur dann stabil, wenn Umgebungstemperatur und Druck entweder gleichzeitig recht hoch sind wie bei der Entstehung oder aber niedrig wie an der Erdoberfläche. Diamanten bleiben dagegen nicht beständig, wenn die Temperatur hoch, der Druck aber gleichzeitig niedrig ist. Den allmählichen Druckausgleich einer „normalen“ Vulkaneruption, bei der heißes, Diamanten enthaltenes Magma langsam aus großen Tiefen an die Erdoberfläche blubbert, würden die Edelsteine nicht überstehen. Sie zerfielen dabei vielmehr zu dem für Gemnologen wertlosen Graphit. Deshalb vermuteten Geowissenschaftler schon seit langem, dass es sich bei den Kimberliten um besondere Vulkanausbrüche handelt, in denen Magma innerhalb kürzester Zeit vom Erdmantel zur Oberfläche aufsteigt.

          Treibgas aus Kohlendioxid und Dampf

          Forscher um Donald Gruce Dingwell von der Ludwig-Maximilians-Universität in München und James Russell von der University of British Columbia in Vancouver sind nun in Laborversuchen den Ursachen für den rapiden Aufstieg des kimberlitischen Magmas auf die Spur gekommen. Das Geheimnis liegt dabei in der unterschiedlichen chemischen Zusammensetzung des oberen Erdmantels und der Erdkruste. Das ursprüngliche, die Diamanten enthaltende Magma besteht weitgehend aus Karbonaten, in denen sogar Wasser vorkommt. Auf dem Weg nach oben durchdringt das Magma die silikatreichen Gesteine der Erdkruste. Diese lösen sich schnell in der Schmelze, wobei viel Kohlendioxid entsteht.

          Der vulkanische Schlund im Labor

          Wie eine Raktete nach oben

          Als Folge beginnt das Magma zu schäumen, was wiederum dessen Fließeigenschaften und vor allem aber den Auftrieb verbessert. Je schneller das Magma weiter nach oben steigt, desto mehr Fremdgestein reißt es mit und desto mehr Silikate werden gelöst. Das verursacht noch mehr Schaum, und letztendlich treiben Kohlendioxid und Wasserdampf die heiße Gesteinsschmelze mit großer Wucht wie eine Rakete voran. Tatsächlich kann das Magma mit Geschwindigkeiten von bis zu 180 Kilometer pro Stunde aufsteigen. Wie die Forscher in der Zeitschrift „Nature“ (Bd. 481, S. 352) berichten, bleiben bei diesem rasanten Aufstieg die Diamanten unbeschädigt erhalten.

          Weitere Themen

          Nur mal so eine Idee

          Alles im grünen Bereich : Nur mal so eine Idee

          Eine Stadt in der Landschaft: Diese Idee hatte 1874 bereits Adelheid Poninska. Zur Vermeidung von Wohnungsspekulationen wollte die Gräfin Grund und Boden in Gemeinschaftseigentum überführen.

          Immer Kreise fressen

          Netzrätsel : Immer Kreise fressen

          Es gibt so gut wie nichts, was es nicht gibt im Netz der Netze: Geniales, Interessantes, Nützliches und herrlich Überflüssiges. Diesmal: ein Geschicklichkeitsspiel zum Verzweifeln.

          Topmeldungen

          Wie weiter mit dem Brexit? : Das britische System liegt in Trümmern

          Womöglich kann das britische Parlament einen „No Deal“ nach der Europawahl nicht mehr verhindern. Dann müsste die EU sich auch an die eigene Nase fassen – sie hat zur Polarisierung der Politik im Vereinigten Königreich beigetragen.

          Deutschland beim ESC : S!sters am Ende

          Der deutsche Beitrag beim ESC landet mal wieder auf einem der letzten Plätze. Was haben die S!sters falsch gemacht? Und warum suchen sie die Fehler bei anderen?

          Meister Bayern München : Der stille Abgang des Jérôme Boateng

          Die Bayern feiern – nur einer will nicht mitmachen. Jérôme Boateng ist nur eine Randfigur. Er verlässt das Stadion wortlos als erster Münchner. Bei der abendlichen Feier steht Boateng gar nicht mit der Mannschaft auf dem Balkon.

          Newsletter

          Immer auf dem Laufenden Sie haben Post! Abonnieren Sie unsere FAZ.NET-Newsletter und wir liefern die wichtigsten Nachrichten direkt in Ihre Mailbox. Es ist ein Fehler aufgetreten. Bitte versuchen Sie es erneut.
          Vielen Dank für Ihr Interesse an den F.A.Z.-Newslettern. Sie erhalten in wenigen Minuten eine E-Mail, um Ihre Newsletterbestellung zu bestätigen.