http://www.faz.net/-gwz-tlmp

Silizium : Reibungsloser Verkehr

Rohsilizium Bild: obs/Degussa AG

Bislang sind alle Versuche fehlgeschlagen, Silizium in den supraleitenden Zustand überzuführen. Die neue Erkenntnis: Auch in Silizium kann elektrischer Strom frei fließen.

          Für die Halbleiterindustrie ist Silizium das Material der Wahl schlechthin. Es ist recht leicht zu verarbeiten und besitzt in kristalliner Form hervorragende physikalische und chemische Eigenschaften. Durch die gezielte Einlagerung von Fremdatomen - Dotieren genannt - lässt sich die Leitfähigkeit des Materials nach Wunsch verändern. Bei einer starken Dotierung, bei der viele freie Ladungsträger entstehen, wird aus dem Halbleiter sogar ein Metall mit vielen freien Leitungselektronen.

          Manfred Lindinger

          Redakteur im Ressort „Natur und Wissenschaft“.

          Doch sind bislang alle Versuche fehlgeschlagen, metallisches Silizium unter Normaldruck in den supraleitenden Zustand überzuführen, so wie es bei herkömmlichen Metallen möglich ist. Diese Lücke haben nun Forscher von der französischen Wissenschaftsorganisation CNRS in Grenoble offenkundig geschlossen. Dank ihres Verfahrens fließt der elektrische Strom ohne jeglichen Widerstand, wenn man kristallines Silizium auf 0,35 Kelvin kühlt.

          Mehr freie Ladungsträger

          Schon seit sechzig Jahren sucht man bei Silizium nach einer supraleitenden Phase - bislang allerdings mit bescheidenem Erfolg. So ließ sich dotiertes Silizium bislang nur in einen Supraleiter verwandeln, wenn man das Material nebst starker Kühlung einem extrem hohen Druck von 100.000 Atmosphären aussetzte - eine für technische Anwendungen aber nicht praktikable Vorgehensweise. Bei normalem Druck schlugen trotz stärkster Dotierungsversuche alle Bemühungen fehl, Silizium in den supraleitenden Zustand überzuführen. Der Grund: In das Kristallgitter konnte bislang nur eine begrenzte Zahl von Fremdatomen eingebaut werden.

          Das Dilemma haben nun Etienne Bustarret und seine Kollegen offenkundig behoben. Wie sie in der Zeitschrift „Nature“ (Bd. 444, S. 465) berichten, haben sie einen Weg gefunden, in kristallinem Silizium mehr freie Ladungsträger zu erzeugen, als es bislang möglich war. Die Forscher bedampften eine dünne Siliziumprobe mit einem borhaltigen Gas, das sich auf dem Material als feiner Film abschied. Danach setzten sie die Probe intensiven ultravioletten Laserpulsen aus.

          Silizium leitete ohne Widerstand

          Bei jedem Puls schmolz das Material für kurze Zeit, währenddessen die Boratome in das Kristallgefüge eindringen konnten. Sobald das Silizium wieder erstarrte und seine normale Kristallform wieder annahm, froren auch die eingeschleusten Fremdatome an Ort und Stelle fest. Mit jedem Laserpuls erhöhte sich so die Zahl der Boratome im Halbleiter. Auf diese Weise haben Bustarret und seine Kollegen schließlich einen Dotierungsgrad von bis zu acht Prozent erreicht.

          Die Konzentration an Boratomen - und damit an freien Leitungselektronen im Material - überstieg die bisher erreichten Werte um fast eine Größenordnung. Ideale Voraussetzung also, um Supraleitung bei Normaldruck beobachten zu können. Und tatsächlich, als die Forscher ihre Probe mit flüssigem Helium kühlten, leitete das Silizium bei 0,35 Kelvin den elektrischen Strom ohne Widerstand.

          Leitungselektronen finden paarweise zusammen

          Weitere Untersuchungen wie das magnetische Verhalten zeigten, dass das stark dotierte Silizium offenbar zu den konventionellen Supraleitern zählt, die sich durch die sogenannte BCS-Theorie beschreiben lassen. Danach sind die Schwingungen des Kristallgitters letztlich dafür verantwortlich, dass sich die Leitungselektronen paarweise zusammenfinden und so reibungsfrei durch den Kristall wandern, was schließlich den widerstandslosen Stromfluss bewirkt.

          Für technische Anwendungen ist das Dotierungsverfahren noch zu kompliziert und die damit erreichbare Sprungtemperatur von 0,35 Kelvin viel zu tief. Nach Ansicht der Forscher würde die Supraleitung schon früher einsetzten, wenn man eine höhere Konzentration an Boratomen im Material erzeugte. Dann könnten sich die Anwendungen von Silizium nicht länger auf die Halbleiterelektronik beschränken.

          Quelle: F.A.Z. vom 2. Januar 2007

          Weitere Themen

          Physik-Nobelpreis geht an Gravitationswellen-Forscher Video-Seite öffnen

          Stockholm : Physik-Nobelpreis geht an Gravitationswellen-Forscher

          Die Königlich-Schwedische Akademie der Wissenschaften hat in Stockholm mitgeteilt, dass sich in diesem Jahr drei amerikanische Forscher über den Physik-Nobelpreis freuen dürfen. Ausgewählt wurden sie für den Nachweis von Gravitationswellen im All, deren Existenz Albert Einstein bereits vor rund einhundert Jahren vermutet hatte.

          Löten für Einstein

          Nachlese Physik-Nobelpreis : Löten für Einstein

          Elektronik rettete ihm das Studium. Und eine zunächst durchaus lästige Lehrverpflichtung brachte ihn auf die Idee, für die er jetzt den Nobelpreis erhält. Eine Begegnung mit Rainer Weiss.

          Topmeldungen

          Hier gibt ein Dolmetscher des Bamf zu Testzwecken eine arabische Sprachprobe ab.

          F.A.Z. exklusiv : Wenn der Dialekt die wahre Herkunft verrät

          Was tun, wenn Asylbewerber keinen gültigen Ausweis haben? Das Bundesamt für Migration und Flüchtlinge setzt nach eigener Auskunft weltweit einzigartige biometrische Sprachsoftware ein. Sie soll die Herkunft von Asylbewerbern eindeutig ermitteln.

          F.A.Z. exklusiv : Der FC Bayern wächst mit neuen Rekorden

          „Mia san immer reicher“: Sportlich kämpft das Münchner Fußballunternehmen um Anschluss. Wirtschaftlich hält man mit den Großen der Branche in Europa mit. Das zeigen die neuesten Zahlen.

          Artenvielfalt : „Das Problem sind die Monokulturen“

          Ausgeräumte Landschaften und einige Herbizide schaden Insekten, dabei sind die Tiere wichtig für die Landwirtschaft. Ein Gespräch mit Agrarökologe Teja Tscharntke von der Universität Göttingen zum Insektensterben.

          Newsletter

          Immer auf dem Laufenden Sie haben Post! Abonnieren Sie unsere FAZ.NET-Newsletter und wir liefern die wichtigsten Nachrichten direkt in Ihre Mailbox. Es ist ein Fehler aufgetreten. Bitte versuchen Sie es erneut.
          Vielen Dank für Ihr Interesse an den F.A.Z.-Newslettern. Sie erhalten in wenigen Minuten eine E-Mail, um Ihre Newsletterbestellung zu bestätigen.